カブクコネクト

断面の計算

断面とは、物体を仮想切断した時にできる面です。

 

断面の例

 

断面積:断面の面積です。

断面係数:部材の曲げモーメントに対する強さを表す数値です。

断面2次モーメント:部材の曲げモーメントに対する変形し難さを表す数値です。

 

計算方法表

断面 重心位置 断面積 断面係数 断面2次モーメント
e【mm】 A【mm2 Z【mm3 i【mm4
\[\frac {H}{2}\] \[H^2\] \[\frac {H^3}{6}\] \[\frac {H^4}{12}\]
\[\frac {H}{2}\] \[H^2-h^2\] \[\frac {1}{6} × \frac {H^4-h^4}{H}\] \[\frac {H^4-h^4}{12}\]
\[\frac {H}{2}\] \[H^2-(\frac {πd^2}{4})\] \[\scriptsize \frac {1}{6H}×(H^4-\frac {3π}{16}d^4)\] \[\scriptsize \frac {1}{12}×(H^4-\frac {3π}{16}d^4)\]
\[\frac {H}{2}\] \[BH\] \[\frac {BH^2}{6}\] \[\frac {BH^3}{12}\]
\[\frac {H}{2}\] \[HB-hb\] \[\scriptsize \frac {1}{6H}×(BH^3-bh^3)\] \[\scriptsize \frac {1}{12}×(BH^3-bh^3)\]
\[\frac {H}{2}\] \[B(H-h)\] \[\scriptsize \frac {B}{6H}×(H^3-h^3)\] \[\scriptsize \frac {B}{12}×(H^3-h^3)\]
\[\frac{H\sqrt{2}}{2}\] \[H^2\] \[0.1179H^3\]\[(\frac{\sqrt{12}}{2}×H^3)\] \[\frac {H^4}{12}\]
\[\frac {H}{2}×\sqrt{2}\] \[H^2-h^2\] \[\scriptsize 0.1179×(\frac{H^4-h^4}{H})\]\[\scriptsize (\frac{H^4-h^4}{12H}×\sqrt{2})\] \[\scriptsize \frac {H^4-h^4}{12}\]
\[\frac {D}{2}\] \[\frac {πD^2}{4}\]\[πR^2\] \[\frac {πD^3}{32}\]\[(\frac {πR^3}{4})\] \[\frac {πD^3}{64}\]\[(\frac {πR^4}{4})\]
\[\frac {D}{2}\] \[\frac {π}{4}×(D^2-d^2)\] \[\scriptsize \frac {π}{32}×(\frac {D^4-d^4}{D})\]\[\scriptsize {\frac {π}{4}×(\frac {R^4-r^4}{R})}\] \[\scriptsize \frac {π}{64}×(D^4-d^4)\]\[\scriptsize {\frac {π}{4}×(R^4-r^4)}\]
\[\frac {2H}{3}\] \[\frac {BH}{2}\] \[\frac {BH^2}{24}\] \[\frac {BH^3}{36}\]
\[\scriptsize e1=\frac {(3B_1+2B_2)}{(2B_1+B_2)}×\frac {H}{3}\]\[\scriptsize e2=H-e1\] \[\scriptsize (2B_1+B_2)×\frac{H}{2}\] \[\scriptsize \frac{{6B_1}^2+6B_1B_2+{B_2}^2}{12×(3B_1+2B_2)}×H^2\] \[\scriptsize \frac{({6B_1}^2+6B_1B_2+{B_2}^2)}{36×(2B_1+2B_2)}×H^2\]
\[0.866a\]\[(\frac{\sqrt{3}}{2}×a)\] \[2.598a^2\]\[(\frac{3\sqrt{3}}{2}×a^2)\] \[\frac{5}{8}×a^3\] \[0.5413a^4\]\[(\frac{5\sqrt{3}}{16}×a^4)\]
\[a\] \[2.598a^2\]\[(\frac{3\sqrt{3}}{2}×a^2)\] \[0.5413a^3\]\[(\frac{5\sqrt{3}}{16}×a^3)\] \[0.5413a^4\]\[(\frac{5\sqrt{3}}{16}×a^4)\]
\[0.924a\] \[2.828a^2\] 0.6906 \[0.5413a^4\]\[(\frac{5\sqrt{3}}{16}×a^4)\]
\[0.4142a\]\[\frac{a}{1+\sqrt{2}}\] \[2.828a^2\] 0.1095 0.0547
e1=0.2234r
e2=0.7766r
\[r^2(1-\frac{π}{4})\] \[0.00966r^3\]\[(\frac{r^4}{e2}×0.0075)\] \[0.0075r^4\]
a πBa \[\frac{π}{4}Ba^3\] \[\frac{π}{4}Ba^2\]
\[e1=0.4244r\]\[e2=0.5756r\] \[\frac{πr^2}{2}\] \[z1=0.2587r^3\]\[z2=0.1908r^3\] \[(\frac{π}{8}-\frac{8}{9π})×r^4\]
\[e1=0.4244r\]\[e2=0.5756r\] \[\frac{πr^2}{4}\] \[z1=0.1296r^3\]\[z2=0.0956r^3\] \[0.055r^4\]
\[\frac{H}{2}\] \[2v(H-D)+\frac{πd^2}{4}\] \[\scriptsize \frac{1}{12}×{\frac{3π}{16}D^4\]\[\scriptsize +v(H^3-D^3)\]\[\scriptsize +v^3(H-D)}\] \[\scriptsize \frac{1}{6H}×{\frac{3π}{16}D^4\]\[\scriptsize +v(H^3-D^3)\]\[\scriptsize +v^3(H-D)}\]
\[\frac{H}{2}\] \[\scriptsize 2v(H-d)+\frac{π(D^2-d^2)}{4}\] \[\frac{2×H}{3}\] \[\frac{2×H}{3}\]
\[\frac{H}{2}\] \[HB-hb\] \[\frac{BH^3-bh^3}{6H}\] \[\frac{BH^3-bh^3}{12}\]
\[e1=H-e1\]\[\scriptsize e2=\frac{(vH^2+bt^2)}{(vH+bt)}×\frac{1}{2}\] \[\scriptsize HB-b(e2+h)\] \[z1=\frac{i}{e1}\]\[z2=\frac{i}{e2}\] \[\scriptsize \frac{Be1^2-bh^3+ve2^3}{3}\]
\[\frac{H}{2}\] \[HB+hb\] \[\frac{BH^3+bh^3}{6H}\] \[\frac{BH^3+bh^3}{12}\]
\[\frac{H}{2}\] \[HB-hb\] \[\frac{BH^3-bh^3}{6H}\] \[\frac{BH^3-bh^3}{12}\]
\[e1=H-e1\]\[\scriptsize e2=\frac{vH^2-bt^2}{vH+bt}×\frac{1}{2}\] \[HB-b(e2+h)\] \[z1=\frac{i}{e1}\]\[z2=\frac{i}{e2}\] \[\scriptsize \frac{Be1^2-bh^3+ve2^3}{3}\]

 

最短5秒で見積もり、発注